February 19, 2020

OTD Underground Storage Collaborative: Industry Needs

Kristine Wiley and Amanda Harmon, GTI Daniel Ersoy, Element Resources

WWW.OTD-CO.ORG

Operations Technology Development

 $\mathbf{D}\mathbf{T}\mathbf{D}$

Operations Technology Development (OTD) Overview

Established 2003

Stand-alone, not-for-profit, member-controlled company where gas utilities work together to develop technology solutions to common issues

- Annual membership dues are calculated based on number of customer meters
- New projects selected by members based on needs
- Each member votes their own dollars to specific projects
- > All members have access to all project information

 \$12M

 \$150-\$750k

 \$0.50

 member/yr

27 Members

Operations

Technology Development

Underground Natural Gas Storage Collaborative - Background

 Develop a collaborative of underground natural gas storage operators to identify and facilitate research needs and projects related to underground natural gas storage operations

- funding sources for underground
- Limited funding sources for underground natural gas storage R&D

billion cubic feet

1.800

1,600

1,400

1.200

1,000

800

 Approximately half of OTD member companies have underground storage assets

Source: EIA

5-year

52-week

current

4,500

4.000

3,500

3,000

2,500

2.000

1,500

1.000

500

Underground Natural Gas Storage Collaborative - Overview

- > Collected approximately 30 needs
 - One-on-one and roundtable discussions with operator subject matter experts (SME) and UGS research and consulting organizations
- Medium to high priority needs were grouped into 16 programs
- > Developed a draft research roadmap
 - Program areas
 - Timeline
 - Stakeholders
 - Project type

Operations

Technology Development

Underground Natural Gas Storage Collaborative - Needs

- > Double Barrier Requirement
 - Develop new/better technology
 - Determine impact of taking certain actions and a way to quantify and qualify the consequences of imposing such a requirement
- > Annular Space Pressure
 - Direct pressure measurement
 - Risk based maximizing of annulus and aboveground gas measurements
- > Gas Leak Guidance
 - Levels, locations, leak rates, measurement methods
- > Cycling Affect on Cement Life
 - Collaborative research with DOE and PHMSA

DRAFT UNDERGROUND GAS STORAGE RESEARCH ROADMAP				Research Class				Timing					Sponsors / Stakeholders			
#	Priority	UGS Research Program	Technology	Knowledge	Standards	Regulations	2020	2021	2022	2023	2024	Government	Operaor	Trade	Committee	
1	Very High	Double Barrier Requirements	Т	К								G	0	Т		
2	High	Regulator and Standard Resources and Data		К	S	R						G	0	Т	С	
3	High	Annular Space Pressure	Т	К									0	Т	С	
4	High	Gas Leak Guidance		K									0	Т	С	
5	High	Inventory Methods, Models, and Procedures		K									0			
6	High	Cycling Affect on Cement Life		К								G	0			
7	High	Well Pad Size and Protection		К									0			
8	High	Through Tubing/Patch Casing Inspection	Т									G	0			
9	Medium	Risk Guidance		К	S	R						G	0	Т	С	
10	Medium	Buffer Zone Practices		К	S								0		С	
11	Medium	Valve Testing	Т									G	0			
12	Medium	Blow-out Guidelines		К		R							0		С	
13	Medium	Pressure and Flow/Velocity Measurement and Guides	Т										0	Т	С	
14	Medium	Gas Quality Real Time	Т										0	Т		
15	Medium	Emission Reduction Quantification		K		R							0			
16	Medium	Decommissioning Process		К	S	R							0		С	

MIC in Underground Natural Gas Storage Formations - Background

- > Purpose: To create a preliminary guidance document for assessing microbiological influenced corrosion (MIC) and biological gas souring in underground storage formations
- > Background: MIC is a known risk that can have deleterious effects on energy infrastructure
- MIC is estimated to contribute up to 20% of all corrosion damage of metals and building materials and 40% of overall corrosion costs
- > API 1170 and 1171 to ensure integrity of underground storage assets
- Blade's RCA for Aliso Canyon determined that MIC caused integrity loss of well tubing

Microbiological Community in Underground Storage Formations - Scope

- Scope of Work: Sample gas and liquids during injection and withdrawal period from underground storage formations.
- The storage formations samplers were depleted natural gas and aquifers in the Midwest.
- Chemical and molecular biological analysis of samples

Image: Sampling point at underground natural gas storage well head (GTI)

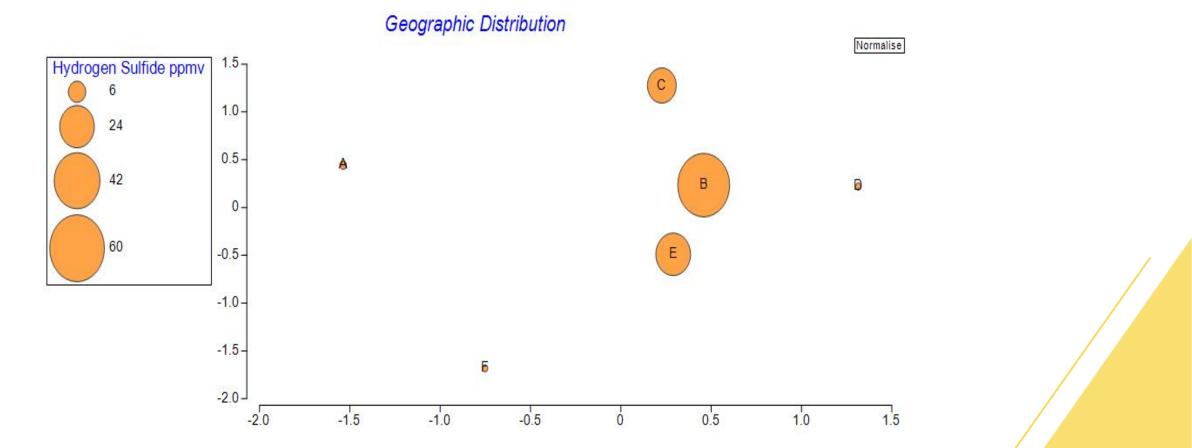


Figure 1: Geographic distribution of five sampling sites (A-E) based on latitude and longitude. Circle size indicates average H2S concentrations. Orientation may be obscured to preserve sample site anonymity.

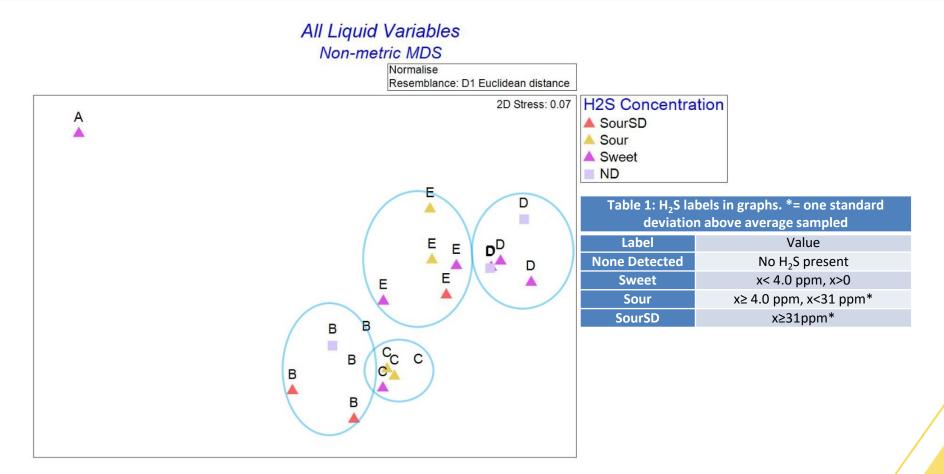


Figure 2: Non-Metric MDS Euclidian Distance plot of all liquid samples. Symbols represent H2S concentration. Labels represent sample site. Well site groups are circled. All 36 variables analyzed are weighted equally.

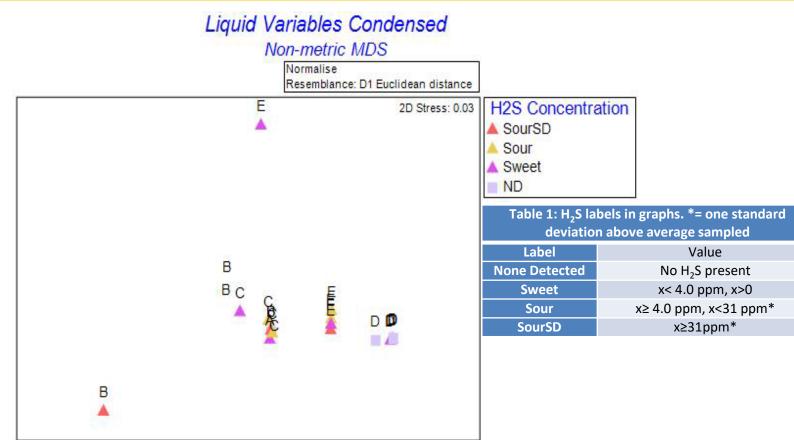


Figure 3: Non-Metric MDS Euclidian Distance plot of all liquid samples. Symbols represent H2S concentration. Labels represent sample site. Only 5 variables associated with promoting sulfur microorganisms are analyzed and all weighted equally.

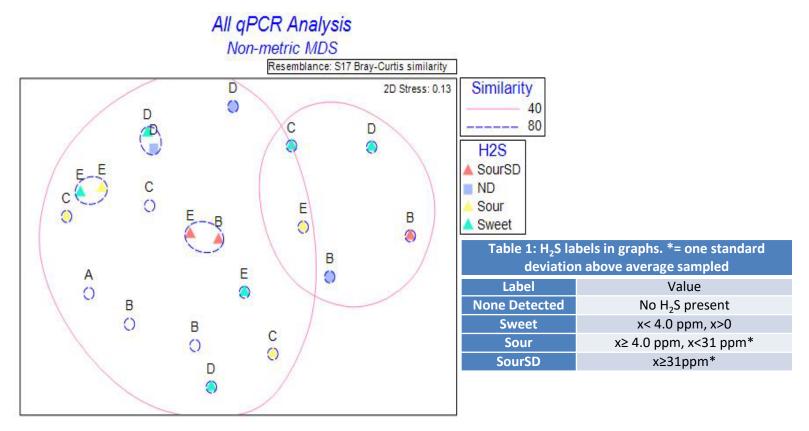


Figure 4: Non-Metric MDS Bray Curtis Distance plot of all microbiology samples. Symbols represent H2S concentrations, samples without a symbol reflect locations where microbiology was sampled without a gas analysis. Labels represent sample site. All variables are transformed by LOG10 and weighted equally. Blue circles indicate 80% similarity and gray lines depict 40% similarity.

100% 80 90% 70 80% 60 70% Sulfide ppm Percent Population 50 60% 50% 40 Hydrogen 40% 30 \langle 30% 20 20% 10 10% 0% 0 D С В А Е Total Sulfur Reducers Non Sulfur Hydrogen Sulfide

Figure 5: Relative Abundance of Sulfur Microorganisms to Hydrogen Sulfide

Percent Sulfur Microorganisms to Hydrogen Sulfide

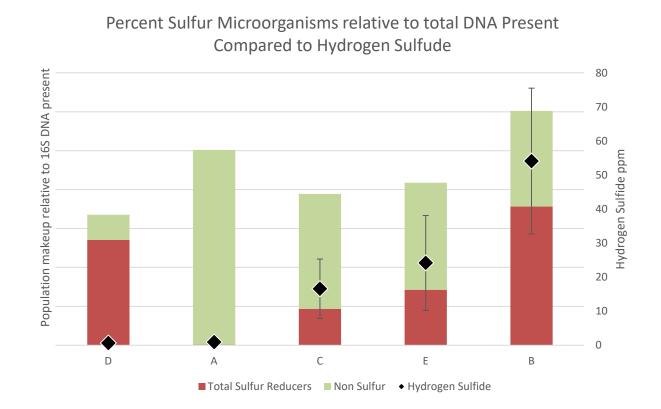


Figure 6: Relative Abundance of Sulfur Microorganisms to total DNA Present Compared to Hydrogen Sulfide

- > Conclusions: More questions than answers!
- Each storage formation has a unique environmental microbiology community
- MIC associated microorganisms were found in both aquifers and depleted hydrocarbon formation fluids
- > H_2S comes from abiotic and biotic pathways
 - Is there a source of contamination?
- Failure analysis of tubing structure indicated MIC pitting in Aliso Canyon
 - Methanogens were determined to be the predominate species

Kristine Wiley kwiley@gti.energy